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By using a lattice characterization of continuous projections defined on a topological
vector space E arising from a dual pair, we determine the automorphism group of their
orthomodular poset Proj(E) by means of automorphisms and anti-automorphisms of
the lattice L of all closed subspaces of E. A connection between the automorphism
group of the ring of all continuous linear mappings defined on E and the automorphism
group of the orthoposet Proj(E) is established.
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1. INTRODUCTION

In a vector space E, there exists a natural correspondence between the projec-
tions and pairs of subspaces: to every projection p is associated the pair (Imp, Kerp)
of subspaces. If E is a topological vector space and p a continuous projection then
(Imp, Kerp) is a pair of closed subspaces and Imp + Kerp is a topological direct
sum. In a previous paper Chevalier (2002), we introduced the projection poset
P(L) of alattice L satisfying some properties of lattices of closed subspaces. We
proved that if L is the lattice of all closed subspaces of a topological vector space
E arising from a dual pair, then P(L) is isomorphic to the poset of continuous
projections defined on E (Theorem 1 and 2 of Chevalier (2002)). By using this
isomorphism, we determined the automorphism group of a poset of continuous
projections by means of automorphisms and anti-automorphisms of the lattice L
(Theorem 3 of Chevalier (2002)).

This paper continues Chevalier (2002). In the first part, Theorem 3 is im-
proved, a restrictive hypothesis is removed and its setting is extended to some
incomplete lattices.
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In the second part of the paper, we prove a continuous form of the first
fundamental theorem of projective geometry. This result allows us to relate the
automorphism group of the orthomodular poset of continuous projections defined
on a topological vector space E with the automorphism group of the ring of
continuous linear mappings defined on E.

Information about the lattice concepts used in this paper may be found in
Maeda and Maeda (1970), and Kothe (1969) or Schaefer (1966) are good refer-
ences for topological vector spaces.

2. THE ORTHOMODULAR POSET OF PROJECTIONS
OF A SYMMETRIC LATTICE

In this section, we recall some definitions and results from Chevalier (2002)
where the reader is referred to for more information.

In a lattice L, (a, b) € L? is a modular pair, written (a, b)M, if (x Va) A
b =x Vv (a A D) for every x < b. The pair (a, b) is a dual modular pair, written
(a, b)M*, if (a, b)M holds in the dual lattice L* of L and the lattice L is said to
be a symmetric lattice if (a, b)M implies (b, a)M and (a, b)M* implies (b, a)M*.

Our purpose in the following definition of the projection poset of a lattice L
is to obtain, when L is the lattice of all closed subspaces of a topological vector
space E, a poset defined in a algebraic setting and isomorphic to the poset of all
continuous linear projections defined on E. See Chevalier (2002) for a discussion
about the motivation of this definition.

Definition I. Let L be a symmetric lattice. The projection poset P(L) of L is the
following subset of the direct product L x L :

P(Ly={@byeLxL|lavb=1anb=0, (a,b)M, (a,b)M*}

For a projection p = (a, b) € P(L),ais called the image of p and b its kernel.
If (a, b) is a projection of a symmetric lattice L then (b, a) is also a projection and
we write (b, a) = (a, b)*.

Proposition 1. (Chevalier (2002), Harding (1996), Mushtari (1998)) Let L be a
symmetric lattice with 0 and 1. If P(L) is ordered by the restriction < of the order
relation on L x L* then (P(L), <, 1) is an orthomodular poset (abbreviated
OMP). If L possesses a structure of OMP then this OMP is naturally isomorphic
to a suborthomodular poset of P(L).

An AC-lattice is an atomistic lattice with the covering property : if p is
an atom and a A p =0 then <a V p, that is a <x <a Vv p implies a = x or
avp=x.
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If L and L* are AC-lattices, L is called a DAC-lattice. Any DAC-lattice
is symmetric and finite-modular (Maeda and Maeda, 1970, Theorem 27.5). Ir-
reducible complete DAC-lattices of length > 4 are representable by lattices of
closed subspaces and many lattices of subspaces are DAC-lattices. We will now
specify this last assertion.

Let K be a field, E a left vector spaces over K, F a right vector space
over K. If there exists a nondegenerate bilinear form B on E x F, we say that
(E, F) is a pair of dual spaces. For example, if E is a locally convex space and
E’ its topological dual space then (E, E’) is naturally a pair of dual spaces with
B(x, y) = y(x) (Kothe, 1969, p. 234).

For a subspace A of E, we put

At ={y e F | B(x,y) =0 for every x € A}.

Similarly, let
Bt ={x € E | B(x,y) =0 for every y € B}

for every subspace B of F. A subspace A of E is called F-closed if A = A+* and
the set of all F-closed subspaces, denoted by L (E) and ordered by set-inclusion,
is a complete irreducible DAC-lattice. Conversely, for any irreducible complete
DAC-lattice L of length > 4, there exists a pair (£, F) of dual spaces such that
L is isomorphic to the lattice of all F-closed subspaces of E (Maeda and Maeda,
1970, Theorem 33.7).

The set of all E-closed subspaces of F is similarly defined and is also a
DACH-lattice.

Let (E, F) be a pair of dual spaces. The linear weak topology on E, denoted
by o (E, F), is the linear topology defined by taking {G* | G C F, dimG < oo}
as a basis of neighbourhoods of 0. If F is interpreted as a subspace of the algebraic
dual of E then a sub-basis of neighbourhoods of 0 consists of kernels of elements
of F.

The linear weak topology on F, noted o (F, E), is defined in the same way.
The space F can be interpreted as the topological dual of E for the o(E, F)
topology and E as the topological dual of F for the o (F, E) topology. Equipped
with their linear weak topologies, E and F are topological vector spaces (Kothe,
1969, § 10.3) if the topology on K is discrete.

Moreover, for a subspace G C E, we have G = G11 and thus a closed
subspace in E is an unambiguous notion.

The following theorem shows that our definition of a projection poset of a
lattice is appropriate for our purpose.

Theorem 1. (Chevalier, 2002) Let L be a complete irreducible DAC-lattice. If L
is representable as the lattice L of all F-closed subspaces of a pair of dual spaces
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(E, F) then the projection orthoposets P(L) and P(L) are isomorphic and the
correspondence p — (Imp, Kerp) is an isomorphism between the orthomodular
poset of o (E, F)-continuous linear projections defined on E onto P(L)

The linear weak topology seems to be a poor topology. However, a linear
mapping f, defined on a locally convex space E, is weakly continuous if and only
f is continuous for the linear weak topology o (E, E’) (Kothe, 1969, 20.4) and so
we obtain the following consequences of Theorem 1.

Corollary 1. (Chevalier, 2002) Let E be a locally convex space and L its lattice
of all closed subspaces. The projection orthomodular poset P (L) is isomorphic to
the poset of weakly continuous linear projections defined on E.

Corollary 2. (Chevalier,2002) If His a Hilbert space (more generally, a metriz-
able space) and L its lattice of closed subspaces then the projection orthomodular
poset P(L) is isomorphic to the orthoposet of continuous linear projections defined
on H.

3. AUTOMORPHISMS OF AN ORTHOMODULAR
POSET OF PROJECTIONS

The main result of Chevalier (2002) is the generalization of a theorem of
Ovchinnikov (1993) and gives a description of automorphisms of a projection
orthoposet P(L) by means of automorphisms and anti-automorphisms of the
lattice L when L is a complete DAC-lattice satisfying the condition

for every a € L there exists b € L such that (a, b) € P(L) (C).

Moreover, it is proved in Chevalier (2002) that there are exactly two kinds of
automorphisms on an orthoposet of projections: the so-called even automorphisms
which transform projections with the same image into projections with the same
image and the odd automorphisms which transform projections with the same
image into projections with the same kernel. This fact generalizes a theorem of
Ovchinnikov (1993).

In this section, we will improve on the main result of Chevalier (2002) by
removing the restriction condition (C) and by extending its setting to certain
incomplete lattices.

Let us say that an irreducible DAC-lattice L is a G-lattice if L is complete or
if L is modular and complemented. Typical examples of G-lattices are obtained
by considering a Hilbert space H: the lattice of all closed subspaces of H is
a G-lattice as a complete irreducible DAC-lattice and its sublattice of finite or
cofinite dimensional elements is a G-lattice as acomplemented modular irreducible
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DAC-lattice. Irreducible DAC-lattices of length > 4 which are either complete or
modular and complemented share the following properties:

e Every atom has more than one complement.

e If a <b then there exist different atoms p; and p, such that a vV p; =
av p, =b.

e Two different atoms have a common complement.

By using these facts, all the results preceding Theorem 3 of Chevalier (2002),
proved for irreducible complete DAC-lattices, extend to G-lattices and an improved
version of Theorem 3 is as follows.

Theorem 2. Let L be a G-lattice of length > 4. For every automorphism ¢ of
the poset P(L) there exists

1. an automorphism f of the lattice L such that ¢((a, b)) = (f(a), f (b)),
(a,b) € P(L), if ¢ is even,

2. ananti-automorphism g of the lattice L such that ¢((a, b)) = (g(b), g(a)),
(a,b) € P(L),if ¢ is odd.

Conversely, if f is an automorphism of L then ¢ : P(L) — L x L* defined
by ¢((a, b)) = (f(a), f(b)) is an even automorphism of P(L) and if g is an anti-
automorphism of L then r : P(L) — L x L* defined by ¥((a, b)) = (g(b), g(a))
is an odd automorphism of P(L).

Proof: First we recall some notations from Chevalier (2002). In a DAC-lattice
L, At(L) denotes the set of all atoms, A¢*(L) is the set of all coatoms, and F (L)
is the G-lattice of all finite or cofinite elements of L. By P;(L) we mean the set of
all atoms of the projection poset P(L).

Let us denote by L the lattice L if L is an irreducible complemented modular
DAC-lattice and the lattice F(L) if L is a complete irreducible DAC-lattice. In
the two cases, L™ is an irreducible complemented modular DAC-lattice and the
restriction of ¢ to P(L™) is an automorphism.

Assume that ¢ is even. By Proposition 8 of Chevalier (2002), there exist
two bijections f : At(L*) —~ At(L™") and f5 : At*(L") —~ At*(L") such that,
for every (p, q) € Pi(LY), ¢((p, q)) = (fi(p), f2(q)). Leta € L™, a # 0. There
exists b € L such that (a, b) € P(L™). For any atom p < a there exists a coatom

q with (p, q) < (a, b). Thus ¢((p, q)) = (f1(p), f2(q)) < ¢(a, b). If ¢((a, b)) =
(c, d) then

fidpe At(LY) | p<a}) C{peAt(LT)| p <c}.

By using ¢!, we have

filp e ALY | p<ah={pe Al | p=c}
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and so Proposition 9 of Chevalier (2002) implies that f} can be extended to an
automorphism f of the lattice L*. Similarly, f> has an extension, f.

The correspondence (a, b) € P(L™) — (fi(a), f>(b)) is an automorphism
of the poset P(L™") which agrees with ¢ on P;(L™). As P(L") is atomistic
(Lemma 6 of Chevalier (2002)) , for every (a, b) € P(L™), we have ¢((a, b)) =
(fi(a), fo(b)). This equality is also true for (a, b) = (0, 1).

By Proposition 6 of Chevalier (2002), ¢ is also an automorphism of the
orthoposet P(L*) and thus ¢((a, b)*) = ¢((a, b))*, that is (fi(b), fr(a)) =
(f2(D), fi(@)) and so f1 = f>.

The proof is similar if ¢ is odd and is complete if L is a complemented
modular DAC-lattice. If L is an irreducible complete DAC-lattice, a lemma is
necessary. O

Lemma 1. Let L be an irreducible complete DAC-lattice of length > 4. Any
automorphism of the lattice F (L) extends to an automorphism of L.

Proof: Let (E, F) be a pair of dual spaces such that L is isomorphic to the
lattice L p(E) of all F-closed subspaces of E. The lemma will be proved if any
automorphism ¢ of (L p(E)) extends to an automorphism of L g(E).

Define, for every subspace N of E, o(N) = | J{¥ (M) | M C N, dimM <
oo}. It is clear that ¢(N) is a subspace of E. Let X be a subspace of E and
N=U{ '(M)| M C X, dimM < oo}. The set N is a subspace of E and we
have p(N) = U{lﬁ(l//’l(M)) | M C X, dimM < oo} = X.

Let M, N be two subspaces of E. If M C N then o(M) C ¢(N) and, for the
converse, let L be a subspace of M with dim L = 1. We have ¢(L) C ¢(M) C
@(N) and if 0 # x € ¥(L) then there exists a subspace K C N, dim K < oo,
such that x € ¥(K). By dim ¢(L) = 1, we have ¥ (L) C ¥(K) and therefore
L C K CN. Finally, M C N and ¢ is an automorphism of the lattice of all
subspaces of E. This automorphism extends ¥ since, for M € Lg(E), (M) and
@(M) have the same finite dimensional subspaces.

Let M € Lp(E). As Lr(E) is a DAC-lattice there exists a family (H,) of
F-closed hyperplanes such that M = A\ H, = ()| Hy and

(M) = ¢((|Ho) = [ o(Ho) = [ ¥ (Hy) = \ ¥ (Ho).

Therefore ¢(M) is F-closed and, as ¢ ' (M) is also F-closed, ¢ is an automor-
phism of L z(E) extending .

We return to the proof of the theorem. If ¢ is an even automorphism of P(L),
L anirreducible complete DAC-lattice, then ¢ is also an automorphism of P(F (L))
and so there exists an automorphism f of F(L) such that ¢(a, b) = (f(a), f(b))
for any (a, b) € F(L). By using the lemma, f extends to an automorphism of
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the lattice L and, as P(L) is an atomistic lattice, ¢(a, b) = (f(a), f(b)) for any
(a,b) € P(L).

The proof is similar if ¢ is odd.

For the converse, Proposition 5 of Chevalier (2002) shows that it suffices to
prove that (a, b) € P(L) implies (f(a), f(b)) € P(L) for any automorphism f
and (g(b), g(a)) € P(L) for any anti-automorphism g. But these implications are
an easy consequence of the equivalence:

(a,b) M & Vx e L, (k Ab)Va)Ab=(x Ab)V (aADb)
and

(a, b)) M* & Vx e L, (k vb)Aa)vb=(xVb)A(aVDb). O

4. MORE ABOUT AUTOMORPHISMS

By Theorem 2, the automorphisms of the projection poset P(L) of acomplete
irreducible DAC-lattice L of length > 4 are determined by the automorphisms
and the anti-automorphisms of the lattice L. As every complete irreducible DAC-
lattice of length > 4 is the lattice of all closed subspaces of a pair of dual spaces,
in this section we will investigate the automorphism group of the lattice of closed
subspaces.

4.1. A Continuous Form of the First Fundamental
Theorem of Projective Geometry

If E; and E, are vector spaces of dimensions at least 3 over the fields K
and K then, by the first fundamental theorem of projective geometry (Baer, 1952,
p. 44, Varadaradjan, 1985, p. 21), the lattices of all subspaces of E| and E, are
isomorphic if and only if K and K, are isomorphic fields and E; and E, have the
same dimension. Moreover, if ¥ is an isomorphism from the lattice of all subspaces
of E; onto the lattice of all subspaces of E; then there exists a semi-linear bijection
s : E1 — E; such that, for every subspace M C E1, (M) = s(M). Conversely,
every semi-linear bijection of E| onto E; induces a lattice isomorphism.

In the following proposition, we generalize a part of the previous result to
lattices of closed subspaces.

Proposition 2. Let (Ey, Fy) and (E,, F,) be two pairs of dual spaces over the
fields Ky and K. If there exists an isomorphism v of the lattice Ly, (E;) onto
the lattice L,(E,) then Ky and K, are isomorphic fields and there exists a semi-
linear bijection s : E| — E, such that, for every F\-closed subspace M of E,
Y (M) = s(M).
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Proof: The mapping v is an order isomorphism of the poset of all finite
dimensional subspaces of E; onto the poset of all finite dimensional subspaces
of Ez.

Define, for every subspace N of E, o(N) = J{¥ (M) | M C N, dimM <
oo}. By a proof similar to the proof of Lemma 1, ¢ is an isomorphism of the lattice
of all subspaces of E; onto the lattice of all subspaces of E, which extends .
Thus, by the first fundamental theorem of projective geometry, the fields K; and
K, are isomorphic and there exists a semi-linear bijection s : £ — E; such that,
for every F-closed subspace M of E|, (M) = s(M). O

Remark 1. This proof is similar to the proof of Lemma 1 of Fillmore and
Longstaff (1984) where the authors prove the same result for complex normed
spaces.

In the case of lattices of all subspaces of vector spaces, any semi-linear
bijection induces a lattice isomorphism. For lattices of closed subspaces, only
continuous semi-linear bijections are allowed.

Proposition 3. Let (Eq, Fy) and (E,, F») be two pairs of dual spaces over the
same field. If E1 and E, are equipped, respectively, with the o (E, Fy)-topology
and the o (E,, F»)-topology then, for every semi-linear bijection s : E\ + E,, the
following statements are equivalent.

1. The bijection s is bicontinuous (i.e. both s and s~" are continuous).

2. H e Lpr(E\)— s(H) is a bijection from the set of all Fi-closed
hyperplanes of E, onto the set of all F,-closed hyperplanes
of Es.

3. M € Ly (E)) — s(M) is an isomorphism from the lattice L, (Ey) onto
Lp,(E>).

Proof: 1) = 2). Since s is a semi-linear bijection, the correspondence M +—
s(M) is an isomorphism of the lattice of all subspaces of E; onto the lattice of all
subspaces of E, and maps bijectively the sets of all hyperplanes. If H C E, is an
F>-closed hyperplane then H is a neighbourhood of 0 for the o (E», F») topology.
Since s is continuous, there exists a finite dimensional subspace G C F; such
that G+  s~'(H). As s~'(H) has a finite codimension in G+, s~!(H) is closed
(Kothe, 1969, property (7), p. 87) and since s~ is also continuous, H > s(H)
is a bijection from the set of all F}-closed hyperplanes of E; onto the set of all
F>-closed hyperplanes of E,.

2)=3). Let M € Lp(E;). As Lg(E;) is a DAC-lattice there exists a
family (H,) of Fj-closed hyperplanes such that M = A\ H, = () H, and
therefore s(M) = s((| Hy) = [ s(Hy) = \ s(Hy). Thus s(M) € Lf,(E>) and
s(Lp,(E1)) C Lr,(E>). As s7! also satisfies the statement (2), s(Lf,(E})) =
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Lg,(Ey) and M € L, (Ey) = s(M) is an isomorphism from the lattice L, (E)
onto L f,(E»)

3) = 1). This is clear since the family of all closed hyperplanes is a O-
neighbourhood sub-basis for the linear weak topology. O

Corollary 3. Let E| and E, be real metrizable locally convex spaces.

1. E| and E; are isomorphic if and only if their lattices of closed subspaces
C(E1) and C(E>) are isomorphic.

2. ¥ :C(Ey) — C(Ey) is a lattice isomorphism if and only if there exists
a bicontinuous linear bijection s : E1 +— E, such that, for every M €
C(ED, ¥(M) = s(M).

Proof: As E; and E; are real vector spaces, semi-linear bijections are simply
linear bijections and, as E; and E, are metrizable locally convex spaces, a linear
mapping s : E; — E is continuous if and only if s is a continuous mapping for
the linear weak topologies. O

Remark 2. This corollary is a generalization of the following result of Mackey
(1942): two real normed spaces X; and X, are isomorphic if and only if there
exists a linear bijection T : X — X, which carries bijectively closed hyperplanes
of X, into closed hyperplanes of X,; if T exists then T is bicontinuous. This
result is extended to complex normed spaces in Fillmore and Longstaff (1984): if
¥ : C(X) — C(Y) is an isomorphism of the lattices of closed subspaces of infinite
dimensional complex normed spaces X and Y then there exists a bicontinuous
linear or conjugate linear bijection s : X — Y such that (M) = s(M) for all
M e C(X). By using the following theorem, this last result is also a consequence
of Proposition 3: if s : X > Y is a bijective semi-linear transformation of infinite-
dimensional complex normed spaces that carries closed hyperplanes to closed
hyperplanes then s is either linear or conjugate linear (Kakutani and Mackey,
1946, or Fillmore and Longstaff (1984), Lemma 2).

4.2. Automorphism Group of a Projection Poset

Let (E, F) be a pair of dual spaces. If L is the DAC-lattice of all F-closed
subspaces of E then Theorem 2 and Proposition 3 allow one to obtain a description
of even automorphisms of the projection lattice P (L) by means of lattice automor-
phisms of L. They are all the correspondences (M, N) € P(L) + (s(M), s(N))
where s : E — E fulfills the equivalent conditions of Proposition 3. In the
language of rings, even automorphisms of the OMP of all continuous lin-
ear projections are of the form p > sps~! since, for a linear projection p,
s(Im p) = Im sps~" and s(Ker p) = Ker sps™!.
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If g is an anti-automorphism of L then any anti-automorphism is of the form
fg where f is some automorphism. Thus the set of all anti-automorphisms is deter-
mined by a particular anti-automorphism and the group of all automorphisms but
it seems difficult to find conditions assuring the existence of an anti-automorphism
of L = Lp(E). We will now discuss this point.

A first case is well known : if L is the modular lattice of all subspaces of
an infinite-dimensional vector space E then L has no anti-automorphism (Baer,
1952, Self-duality theorem, p. 97). This results is extended in Ornstein (1959)
to infinite dimensional projective geometries that are irreducible, complemented,
modular, complete atomic lattices of infinite length. Such lattices can be repre-
sented as lattices of closed subspaces of pairs of dual spaces of infinite dimension
in which any sum of two closed subspaces is closed (Ornstein, 1959). Thus the
automorphism group of the OMP of projections defined on an infinite-dimensional
projective geometry L is isomorphic to the automorphism group of the lattice L.

Now suppose that E is finite dimensional. As F is isomorphic to a subspace
of E* and E to a subspace of F'*, we can assume that £ = F with dim E = n. The
existence of an anti-automorphism of L is equivalent to the existence of an anti-
automorphism of the field K: if « is an anti-automorphism of K and if (e;)1<i<y
is a basis of E then the a-bilinear form

(Zx,-ei, Zy,—ei) = <inei, Z)’iei> = ixia()’i)
i=1

is non-degenerate and determines an anti-automorphism g of L.

The anti-automorphism « is involutary if and only if g is involutary and, in
this case, the group formed by the automorphisms and the anti-automorphisms of
L is the semi-direct product of the normal subgroup of all automorphisms and the
subgroup {lg, g}. The automorphism group of P(L) is the semi-direct product
of the normal subgroup of even automorphisms and a two-element subgroup
{1py, v} where y is an involutary odd automorphism.

In the infinite dimensional case and if £ = F then a particular anti-
automorphism is given by

XeLg(E)» Xt={xeE|(x,X)=0)

and the previous results allow one to obtain all the automorphisms and all the
anti-automorphisms of Lg(E) and thus to determine the automorphism group of
its projection lattice.

Example 1. 1f H is a Hilbert space then the two pairs of dual spaces (H, H)
and (H, H') coincide. The correspondence X € Ly(H) — X L is an involutary
anti-automorphism of the lattice of all closed subspaces of H and p > p* is
the corresponding involutary odd automorphism of the orthoposet of continuous
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linear projection defined on H. By using the previous results, we find again
the main result of Ovchinnikov (1993): the automorphisms of the orthoposet
proj(H) of all continuous linear projections of H are of the form p > s~!ps
or p > s~!p*s where s is a continuous linear bijection in the real case and a
continuous linear or conjugate linear bijection in the infinite dimensional complex
case. In the finite dimensional complex case, s is only a semi-linear bijection. The
automorphism group of Proj(H) is a semi-direct product of the normal subgroup
of even automorphisms and a two-element subgroup.

4.3. Application to the Ring of Continuous Linear Mappings

The following proposition is proved in Jacobson (1964) (Isomorphism Theo-
rem, p. 79) in the study of primitive rings having minimal right ideals. In Fillmore
and Longstaff (1984), a different proof is given in the particular case of infinite-
dimensional complex normed linear spaces. Here, we generalize the latter proof
for two pairs of dual spaces and obtain the result of Jacobson (1964).

Proposition 4. Let (Ey, Fy) and (E,, F>) be the two pairs of dual spaces (over
the fields K, and K,) and let us denote by B(E) and B(E,) the rings of all
continuous linear mappings defined on E| and E, equipped with their linear
weak topologies. If there exists an isomorphism of rings, ® : B(E|) — B(E»),
then K and K, are isomorphic fields and there exists a bicontinuous semi-linear
bijection S : E\ +— E; such that, for every T € B(E)),

&(T)=STS .

Proof: If p is a continuous projection then, as projections are defined by means
of an equation in the language of rings, ®(p) is also a continuous projection. The
same argument shows that, for two projections p and g, we have p < g if and
only if ®(p) < ®(g). Moreover ®(1g, — p) = 1g, — ®(p) and the restriction of
® to the set of all continuous projections is an orthoposet isomorphism.

Fix a linear projection p € B(E;) of rank 1 (such projection exists since
the projection lattice of the DAC-lattice Ly, (E;) is atomistic with atoms of the
form (X, Y), X a one dimensional subspace) and non-zero elements xo € Imp,
yo € Im ®(p). Remark that ®(p) is also a continuous projection of rank 1.

Let x € E; and consider the linear mapping U defined by U(xp) = x and
U(t) = 0 fort € Kerp. The mapping U is continuous as a linear mapping with a
finite-dimensional range and a closed kernel (Schaefer, 1966, p. 75).

Assume that V € B(E;) also satisfies V(xg) = x. For every A € K,
U(\xo) = V(Axp) and thus Uop =V o p. We have ®(U)o ®(p) = P(V)o
®(p) and so D(U)(yp) = ®(V)(yp). Thus, we can define a mapping S : E; — E;
by S(x) = ®U)(yo).
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Let x, x’ € Ey and U, U’, W be elements of B(E;) such that U(xg) =
x, U(xg) =x', W(xg) =x +x". As (U + U')(xp) = x + y, we have (U + U") o
p=Wopand S(x)+ S(x') = S(x + x').

In a similar way, it can be proved that S is a bijection and ®(T) = STS™!, for
every T € B(E).

The center of the rings B(E;),i = 1, 2is {k 1g, | k € K;} since a linear map-
ping which commutes with all projections of rank 1 is a homothetic transformation.
Therefore, for every k € K, there exists k’ € K, such that ®(klg,) = k’lg,. One
can check that the mapping o : K| — K, defined by o (k) = k' is an isomorphism
from the field K; onto the field K, and that S(Ax) = o(1)S(x) for every A € K| .

The last step is the proof of continuity of S. Let f € F; be a continuous
non-zero linear form on E|. Define a linear mapping 7 : E; +— E; by T(x) =
f(x)xo. The mapping x € E| — (f(x), xo) € K x Ej is continuous and, as E is
a topological vector space, T € B(E;). We have STS™! = ®(T) € B(E,) and

x €Ker STS™! & TS(x) =0 < f(S(x)) =0
< S(x) e Ker f & x € S(Ker f)

Since STS™! = &(T) is continuous, Ker STS™! is closed and S, which carries
hyperplanes to hyperplanes, carries closed hyperplanes to closed hyperplanes.
The mapping S~! is continuous and, by symmetry, so does S. O

Remark 3. Assume that E| and E, are real locally convex spaces and that F)
and F; are their topological duals for the weak topology. The rings B(E;) and
B(E,) are the rings of weakly continuous linear mappings defined on E; and E,.
Every ring isomorphism ® : B(E;) — B(E,) is of the form ®(T) = ST S~! with
S : E| — E;, aweakly bicontinuous linear bijection. If £ and E; are metrizable
then S is continuous (Schaefer, 1966, Chap.IV, 7.4). For real Banach space this
result is due to Eidelheit (1940).

Now assume that £} and E; are infinite dimensional complex normed spaces
and F; = E|, F, = E). As S carries closed hyperplanes to closed hyperplanes,
S is linear or conjugate linear (Kakutani and Mackey, 1946, Lemma 2) and by
Fillmore and Longstaff (1984), Lemma 3, S is bicontinuous. We have obtained
a result of Arnold (1944) (see also Fillmore and Longstaff, 1984, Theorem 2): if
® is an isomorphism of the rings of continuous linear transformations on infinite
dimensional complex normed spaces E; and E, then there exists a bicontinuous
linear or conjugate linear bijection S : E; +— E, such that ®(T) = STS~.

Proposition 5. Let (E, F) be a pair of dual spaces.

1. The restriction of an automorphism of the ring B(E) to the set of con-
tinuous linear projection is an even orthoposet automorphism and the



Automorphisms of An Orthomodular Poset of Projections 997

restriction of an anti-automorphism of the ring B(E) to the set of contin-
uous linear projection is an odd orthoposet automorphism.

2. Conversely, every even automorphism of the orthoposet of continuous
linear projections defined on E extends to an automorphism of the ring
B(E).

Proof: 1) If ¢ is an automorphism or an anti-automorphism of the ring B(E)
then its restriction to the set of continuous linear projections is an orthoposet
automorphism. The nature of this automorphism will be given by the following
lemma. O

Lemma 2. Let p and q be the two linear projections defined on a vector space
E.

I.Imp=Imq<& pg=gqandqp = p.
2. Ker p=Ker q & pg=pandqp =q.

Proof: If pg = g and x € Im g then g(x) = x and, since p(g(x)) = q(x), we
have p(x) = x and x € I'm p. Conversely, if Imq C Im p and x € E then x =
X1 + xp, withx; € Imq and x, € Ker g. We have p(q(x)) = p(q(x1)) = p(x1) =
x1 = gq(x) and thus p(q(x)) = g(x). Finally, Imq C Im p < pg = ¢q and all the
other proofs are similar.

We return to the proof of the proposition. If ¢ is an automorphism of B(E)
then, for two projections p and ¢,

Imp=Imgq<s pg=q et gp=p
& d(p)p(g) = d(q) et Pp(q)p(p) = ¢(p)
& Im¢(p) = Im¢(q),

and the restriction of ¢ to the set of continuous linear projections is an even ortho-
poset automorphism. By a similar proof, the restriction to the set of continuous
linear projections of an anti-automorphism is an odd orthoposet automorphism.
If W is an even orthoposet automorphism of the set of all continuous linear
projection defined on E then there exists an automorphism f of the lattice of all
closed subspaces of E suchthat W(Im p, Ker p) = (f(Im p), f(Ker p)).LetS
be the bicontinuous semi-linear bijection such that S(X) = f(X) for every closed
subspace X of E. We have W(p) = SpS~! for every projection p € B(E) and
T € B(E) ~ STS~!is an automorphism of the ring B(E) which extends ¥. O

Question: Do odd automorphisms of the orthoposet of continuous linear projec-
tions defined on E extend to anti-automorphisms of the ring 5(E)?
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A problem in the description of odd automorphisms of lattices of projec-
tions is the lack of knowledge about anti-automorphisms of lattices of closed
subspaces in the infinite dimensional case. Anti-automorphisms which are ortho-
complementations are described, as in the finite dimensional case, by means
of symmetric bilinear forms (Varadaradjan, 1985, Lemma 4.2.) but if an anti-
automorphism & does not satisfy M N (M) = {0} then, for a finite dimensional
subspace F, M — ®(M) N F is not, in general, an anti-automorphism of [0, F']
and it is not possible to reduce the infinite dimensional case to the finite dimen-
sional one in the usual way.
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